Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Eur Heart J Cardiovasc Pharmacother ; 8(7): 738-751, 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2326576

ABSTRACT

Awareness of racial/ethnic disparities represents a key challenge for healthcare systems that attempt to provide effective healthcare and to reduce existing inequalities in the use of and adherence to guideline-recommended cardiovascular drugs to improve clinical outcomes for cardiovascular disease (CVD). In this review, we describe important racial/ethnic differences between and within ethnic groups in the prevalence, risk factors, haemostatic factors, anti-inflammatory and endothelial markers, recurrence, and outcomes of CVD. We discuss important differences in the selection, doses, and response [efficacy and adverse drug reactions (ADRs)] in ethnically diverse patients treated with antithrombotics or lipid-lowering drugs. Differences in drug response are mainly related to racial/ethnic differences in the frequency of polymorphisms in genes encoding drug-metabolizing enzymes (DMEs) and drug transporters. These polymorphisms markedly influence the pharmacokinetics, dose requirements, and safety of warfarin, clopidogrel, and statins. This review aims to support a better understanding of the genetic differences between and among populations to identify patients who may experience an ADR or a lack of drug response, thus optimizing therapy and improving outcomes. The greater the understanding of the differences in the genetic variants of DMEs and transporters that determine the differences in the exposure, efficacy, and safety of cardiovascular drugs between races/ethnicities, the greater the probability that personalized medicine will become a reality.


Subject(s)
Cardiovascular Agents , Cardiovascular Diseases , Coronary Artery Disease , Hemostatics , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Clopidogrel , Coronary Artery Disease/drug therapy , Coronary Artery Disease/genetics , Fibrinolytic Agents/adverse effects , Humans , Imidazoles , Lipids , Organosilicon Compounds , Warfarin
2.
J Immunother Cancer ; 10(4)2022 04.
Article in English | MEDLINE | ID: covidwho-2324416

ABSTRACT

During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the-possibly altered-response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19.We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.


Subject(s)
COVID-19 Drug Treatment , Janus Kinase Inhibitors , Antiviral Agents/therapeutic use , Azetidines , Cytokines/metabolism , Humans , Imidazoles , Indazoles , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Piperidines , SARS-CoV-2
3.
Eur J Med Chem ; 253: 115320, 2023 May 05.
Article in English | MEDLINE | ID: covidwho-2298762

ABSTRACT

Niclosamide, an oral anthelmintic drug, could inhibit SARS-CoV-2 virus replication through autophagy induction, but high cytotoxicity and poor oral bioavailability limited its application. Twenty-three niclosamide analogs were designed and synthesized, of which compound 21 was found to exhibit the best anti-SARS-CoV-2 efficacy (EC50 = 1.00 µM for 24 h), lower cytotoxicity (CC50 = 4.73 µM for 48 h), better pharmacokinetic, and it was also well tolerated in the sub-acute toxicity study in mice. To further improve the pharmacokinetics of 21, three prodrugs have been synthesized. The pharmacokinetics of 24 indicates its potential for further research (AUClast was 3-fold of compound 21). Western blot assay indicated that compound 21 could down-regulate SKP2 expression and increase BECN1 levels in Vero-E6 cells, indicating the antiviral mechanism of 21 was related to modulating the autophagy processes in host cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animals , Mice , Niclosamide/pharmacology , Imidazoles , Vero Cells , Antiviral Agents/pharmacology
4.
J Bone Miner Metab ; 41(2): 268-277, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2283322

ABSTRACT

INTRODUCTION: Zoledronic acid (5 mg; ZOL), a once-yearly bisphosphonate, reduces osteoporotic fractures and increases bone mineral density (BMD). This 3-year post-marketing surveillance examined its real-world safety and effectiveness. MATERIALS AND METHODS: This prospective, observational study included patients who started ZOL for osteoporosis. Data were assessed at baseline, 12, 24, and 36 months for safety and effectiveness. Treatment persistence, potentially related factors, and persistence before and after the COVID-19 pandemic started were also investigated. RESULTS: The safety analysis and effectiveness analysis sets included 1406 and 1387 patients, respectively, with mean age of 76.5 years. Adverse reactions (ARs) occurred in 19.35% of patients, with an acute-phase reaction in 10.31, 1.01, and 0.55% after the first, second, and third ZOL infusions. Renal function-related ARs, hypocalcaemia, jaw osteonecrosis, and atypical femoral fracture occurred in 1.71, 0.43, 0.43, and 0.07% of patients, respectively. Three-year cumulative fracture incidences were 4.44% for vertebral, 5.64% for non-vertebral, and 9.56% for clinical fractures. BMD increased by 6.79, 3.14, and 1.78% at the lumbar spine, femoral neck, and total hip, respectively, after 3-year treatment. Bone turnover markers remained within reference ranges. Treatment persistence was 70.34% over 2 years and 51.71% over 3 years. Male, age ≥ 75 years, no previous medicines for osteoporosis, no concomitant medicines for osteoporosis, and inpatient at the first infusion were related to discontinuation. There was no significant difference in the persistence rate between before and after the COVID-19 pandemic (74.7% vs. 69.9%; p = 0.141). CONCLUSION: This 3-year post-marketing surveillance confirmed the real-world safety and effectiveness of ZOL.


Subject(s)
Bone Density Conservation Agents , Osteoporosis , Product Surveillance, Postmarketing , Aged , Humans , Male , Bone Density , Bone Density Conservation Agents/adverse effects , COVID-19 , Diphosphonates/adverse effects , East Asian People , Imidazoles/therapeutic use , Osteoporosis/epidemiology , Pandemics , Prospective Studies , Zoledronic Acid/adverse effects
5.
J Glob Antimicrob Resist ; 32: 44-47, 2023 03.
Article in English | MEDLINE | ID: covidwho-2242410

ABSTRACT

OBJECTIVES: C-C-chemokine receptors (CCRs) are expressed on a variety of immune cells and play an important role in many immune processes, particularly leukocyte migration. Comprehensive preclinical research demonstrated CCR2/CCR5-dependent pathways as pivotal for the pathophysiology of severe COVID-19. Here we report human data on use of a chemokine receptor inhibitor in patients with COVID-19. METHODS: Interim results of a 2:1 randomised, placebo-controlled, investigator-initiated trial on the CCR2/CCR5-inhibitor Cenicriviroc (CVC) 150 mg BID orally for 28 d in hospitalised patients with moderate to severe COVID-19 are reported. The primary endpoint is the subject's responder status defined by achieving grade 1 or 2 on the 7-point ordinal scale of clinical improvement on day 15. RESULTS: Of the 30 patients randomised, 18 were assigned to receive CVC and 12 to placebo. Efficient CCR2- and CCR5 inhibition was demonstrated through CCL2 and CCL4 elevation in CVC-treated patients (485% and 80% increase on day 3 compared to the baseline, respectively). In the modified intention-to-treat population, 82.4% of patients (14/17) in the CVC group met the primary endpoint, as did 91.7% (11/12) in the placebo group (OR = 0.5, 95% CI = 0.04-3.41). One patient treated with CVC died of progressive acute respiratory distress syndrome, and the remaining had a favourable outcome. Overall, treatment with CVC was well tolerated, with most adverse events being grade I or II and resolving spontaneously. CONCLUSIONS: Our interim analysis provides proof-of-concept data on CVC for COVID-19 patients as an intervention to inhibit CCR2/CCR5. Further studies are warranted to assess its clinical efficacy.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Imidazoles , Sulfoxides
6.
ACS Infect Dis ; 8(10): 2084-2095, 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2076976

ABSTRACT

Viruses are microscopic pathogens capable of causing disease and are responsible for a range of human mortalities and morbidities worldwide. They can be rendered harmless or destroyed with a range of antiviral chemical compounds. Cucurbit[n]urils (CB[n]s) are a family of macrocycle chemical compounds existing as a range of homologues; due to their structure, they can bind to biological materials, acting as supramolecular "hosts" to "guests", such as amino acids. Due to the increasing need for a nontoxic antiviral compound, we investigated whether cucurbit[n]urils could act in an antiviral manner. We have found that certain cucurbit[n]uril homologues do indeed have an antiviral effect against a range of viruses, including herpes simplex virus 2 (HSV-2), respiratory syncytial virus (RSV) and SARS-CoV-2. In particular, we demonstrate that CB[7] is the active homologue of CB[n], having an antiviral effect against enveloped and nonenveloped species. High levels of efficacy were observed with 5 min contact times across different viruses. We also demonstrate that CB[7] acts with an extracellular virucidal mode of action via host-guest supramolecular interactions between viral surface proteins and the CB[n] cavity, rather than via cell internalization or a virustatic mechanism. This finding demonstrates that CB[7] acts as a supramolecular virucidal antiviral (a mechanism distinct from other current extracellular antivirals), demonstrating the potential of supramolecular interactions for future antiviral disinfectants.


Subject(s)
COVID-19 , Disinfectants , Macrocyclic Compounds , Amino Acids , Antiviral Agents/pharmacology , Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/pharmacology , Humans , Imidazoles/chemistry , Macrocyclic Compounds/chemistry , Membrane Proteins , SARS-CoV-2
7.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2066129

ABSTRACT

Topoisomerases are essential enzymes that recognize and modify the topology of DNA to allow DNA replication and transcription to take place. Topoisomerases are divided into type I topoisomerases, that cleave one DNA strand to modify DNA topology, and type II, that cleave both DNA strands. Topoisomerases normally rapidly religate cleaved-DNA once the topology has been modified. Topoisomerases do not recognize specific DNA sequences, but actively cleave positively supercoiled DNA ahead of transcription bubbles or replication forks, and negative supercoils (or precatenanes) behind, thus allowing the unwinding of the DNA-helix to proceed (during both transcription and replication). Drugs that stabilize DNA-cleavage complexes with topoisomerases produce cytotoxic DNA damage and kill fast-dividing cells; they are widely used in cancer chemotherapy. Oligonucleotide-recognizing topoisomerase inhibitors (OTIs) have given drugs that stabilize DNA-cleavage complexes specificity by linking them to either: (i) DNA duplex recognizing triplex forming oligonucleotide (TFO-OTIs) or DNA duplex recognizing pyrrole-imidazole-polyamides (PIP-OTIs) (ii) or by conventional Watson-Crick base pairing (WC-OTIs). This converts compounds from indiscriminate DNA-damaging drugs to highly specific targeted DNA-cleaving OTIs. Herein we propose simple strategies to enable DNA-duplex strand invasion of WC-OTIs giving strand-invading SI-OTIs. This will make SI-OTIs similar to the guide RNAs of CRISPR/Cas9 nuclease bacterial immune systems. However, an important difference between OTIs and CRISPR/Cas9, is that OTIs do not require the introduction of foreign proteins into cells. Recent successful oligonucleotide therapeutics for neurodegenerative diseases suggest that OTIs can be developed to be highly specific gene editing agents for DNA lesions that cause neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Oligonucleotides , DNA/metabolism , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/metabolism , DNA, Superhelical , Humans , Imidazoles , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Nylons , Oligonucleotides/chemistry , Pyrroles , Topoisomerase I Inhibitors/pharmacology , Topoisomerase II Inhibitors , Topoisomerase Inhibitors/pharmacology , Topoisomerase Inhibitors/therapeutic use
8.
Molecules ; 27(17)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2023949

ABSTRACT

In this paper, we report on the preparation of Imidazole-functionalized glass surfaces, demonstrating the ability of a dinuclear Cu(II) complex of a macrocyclic ligand to give a "cascade" interaction with the deprotonated forms of grafted imidazole moieties. In this way, we realized a prototypal example of an antimicrobial surface based on a supramolecular approach, obtaining a neat microbicidal effect using low amounts of the described copper complex.


Subject(s)
Anti-Bacterial Agents , Copper , Anti-Bacterial Agents/pharmacology , Glass , Imidazoles/pharmacology , Ligands
9.
Acc Chem Res ; 55(18): 2708-2727, 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2008235

ABSTRACT

ConspectusAsymmetric organocatalysis has been considered to be an efficient and reliable strategy for the stereoselective preparation of optically active chemicals. In particular, chiral tertiary amines as Lewis base organocatalysts bearing core structures including quinuclidine, dimethylaminopyridine (DMAP), N-methylimidazole (NMI), amidine, etc. have provided new and powerful tools for various chemical transformations. However, due to the limitations in structural complexity, synthetic difficulty, low catalytic efficiency, and high cost, the industrial application of such catalysts is still far from being widely adopted. Therefore, the development of new chiral tertiary amine catalysts with higher activity and selectivity is greatly desired.In order to address the contradiction between activity and selectivity caused by the ortho group, a bicyclic imidazole structure bearing a relatively large bond angle ∠θ was designed as the skeleton of our new catalysts. 6,7-Dihydro-5H-pyrrolo[1,2-a]imidazole (abbreviated as DPI) and 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (abbreviated as TIP) are two of the utilized skeletons. In addition to obtaining satisfactory catalytic activity, excellent enantioselectivity would also be expected because the stereocontrol R group is neither far nor close to the catalytic active site (sp2-N atom) and is adjustable. Based on this skeleton, a family of chiral bicyclic imidazole catalysts were easily prepared and successfully applied in several enantioselective reactions for the synthesis of a variety of valuable chiral compounds.6,7-Dihydro-5H-pyrrolo[1,2-a]imidazole (abbreviated as DPI) is the predominantly utilized skeleton. First, HO-DPI, the key intermediate of the designed chiral bicyclic imidazole catalysts, could be efficiently synthesized from imidazole and acrolein, then separated by kinetic resolution or optical resolution. Second, Alkoxy-DPI, the alkyloxy-substituted chiral bicyclic imidazole catalysts, were synthesized by a one-step alkylation from HO-DPI. This type of catalyst has been successfully applied in asymmetric Steglich rearrangement (C-acylation rearrangement of O-acylated azlactones), asymmetric phosphorylation of lactams, and a sequential four-step acylation reaction. Third, Acyloxy-DPI, the acyloxy-substituted chiral bicyclic imidazole catalysts, were synthesized with a one-step acetylative kinetic resolution from racemic HO-DPI or acylation from enantiopure HO-DPI. The catalyst AcO-DPI has been successfully applied in enantioselective Black rearrangement and in direct enantioselective C-acylation of 3-substituted benzofuran-2(3H)-ones and 2-oxindoles. Fourth, Alkyl-DPI was synthesized via a two-step reaction from racemic HO-DPI and separated easily by resolution. The catalyst Cy-DPI has been successfully applied in dynamic kinetic resolution of 3-hydroxyphthalides through enantioselective O-acylation. Cy-PDPI was synthesized through a Cu-catalyzed amidation from Cy-DPI and successfully applied in the kinetic resolution of secondary alcohols with good to excellent enantioselectivities. Finally, the carbamate type chiral bicyclic imidazole catalysts, Carbamate-DPI, were readily synthesized from HO-DPI, and the catalyst Ad-DPI bearing a bulky adamantyl group was successfully applied in the synthesis of the anti-COVID-19 drug remdesivir via asymmetric phosphorylation. Alongside our initial work, this Account also introduces four elegant studies by other groups concerning asymmetric phosphorylation utilizing chiral bicyclic imidazole catalysts.In summary, this Account focuses on the chiral bicyclic imidazole catalysts developed in our group and provides an overview on their design, synthesis, and application that will serve as inspiration for the exploration of new organocatalysts and related reactions.


Subject(s)
Benzofurans , Lewis Bases , Acrolein , Amidines , Amines , Carbamates , Catalysis , Imidazoles/chemistry , Lactams/chemistry , Oxindoles , Pyridines , Quinuclidines , Stereoisomerism
10.
Int J Environ Res Public Health ; 19(15)2022 07 25.
Article in English | MEDLINE | ID: covidwho-2005993

ABSTRACT

This paper aims to summarize the publishing trends, current status, research topics, and frontier evolution trends of health technology between 1990 and 2020 through various bibliometric analysis methods. In total, 6663 articles retrieved from the Web of Science core database were analyzed by Vosviewer and CiteSpace software. This paper found that: (1) The number of publications in the field of health technology increased exponentially; (2) there is no stable core group of authors in this research field, and the influence of the publishing institutions and journals in China is insufficient compared with those in Europe and the United States; (3) there are 21 core research topics in the field of health technology research, and these research topics can be divided into four classes: hot spots, potential hot spots, margin topics, and mature topics. C21 (COVID-19 prevention) and C10 (digital health technology) are currently two emerging research topics. (4) The number of research frontiers has increased in the past five years (2016-2020), and the research directions have become more diverse; rehabilitation, pregnancy, e-health, m-health, machine learning, and patient engagement are the six latest research frontiers.


Subject(s)
COVID-19 , Publications , Bibliometrics , Biomedical Technology , COVID-19/epidemiology , Humans , Imidazoles , Sulfonamides , Thiophenes , United States
11.
J Antimicrob Chemother ; 77(10): 2706-2712, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-1992221

ABSTRACT

BACKGROUND: The COVER trial evaluated whether nitazoxanide or sofosbuvir/daclatasvir could lower the risk of SARS-CoV-2 infection. Nitazoxanide was selected given its favourable pharmacokinetics and in vitro antiviral effects against SARS-CoV-2. Sofosbuvir/daclatasvir had shown favourable results in early clinical trials. METHODS: In this clinical trial in Johannesburg, South Africa, healthcare workers and others at high risk of infection were randomized to 24 weeks of either nitazoxanide or sofosbuvir/daclatasvir as prevention, or standard prevention advice only. Participants were evaluated every 4 weeks for COVID-19 symptoms and had antibody and PCR testing. The primary endpoint was positive SARS-CoV-2 PCR and/or serology ≥7 days after randomization, regardless of symptoms. A Poisson regression model was used to estimate the incidence rate ratios of confirmed SARS-CoV-2 between each experimental arm and control. RESULTS: Between December 2020 and January 2022, 828 participants were enrolled. COVID-19 infections were confirmed in 100 participants on nitazoxanide (2234 per 1000 person-years; 95% CI 1837-2718), 87 on sofosbuvir/daclatasvir (2125 per 1000 person-years; 95% CI 1722-2622) and 111 in the control arm (1849 per 1000 person-years; 95% CI 1535-2227). There were no significant differences in the primary endpoint between the treatment arms, and the results met the criteria for futility. In the safety analysis, the frequency of grade 3 or 4 adverse events was low and similar across arms. CONCLUSIONS: In this randomized trial, nitazoxanide and sofosbuvir/daclatasvir had no significant preventative effect on infection with SARS-CoV-2 among healthcare workers and others at high risk of infection.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Carbamates , Humans , Imidazoles , Nitro Compounds , Pyrrolidines , SARS-CoV-2 , Sofosbuvir/therapeutic use , South Africa , Thiazoles , Treatment Outcome , Valine/analogs & derivatives
12.
Neuroscience ; 498: 155-173, 2022 08 21.
Article in English | MEDLINE | ID: covidwho-1983733

ABSTRACT

Here, neuromodulatory effects of selective angiotensin-converting enzyme 2 (ACE2) inhibitors were investigated. Two different types of small molecule ligands for ACE2 inhibition were selected using chemical genetic approach, they were synthesized using developed chemical method and tested using presynaptic rat brain nerve terminals (synaptosomes). EBC-36032 (1 µM) increased in a dose-dependent manner spontaneous and stimulated ROS generation in nerve terminals that was of non-mitochondrial origin. Another inhibitor EBC-36033 (MLN-4760) was inert regarding modulation of ROS generation. EBC-36032 and EBC-36033 (100 µM) did not modulate the exocytotic release of L-[14C]glutamate, whereas both inhibitors decreased the initial rate of uptake, but not accumulation (10 min) of L-[14C]glutamate by nerve terminals. EBC-36032 (100 µM) decreased the exocytotic release as well as the initial rate and accumulation of [3H]GABA by nerve terminals. EBC-36032 and EBC-36033 did not change the extracellular levels and transporter-mediated release of [3H]GABA and L-[14C]glutamate, and tonic leakage of [3H]GABA from nerve terminals. Therefore, synthesized selective ACE2 inhibitors decreased uptake of glutamate and GABA as well as exocytosis of GABA at the presynaptic level. The initial rate of glutamate uptake was the only parameter that was mitigated by both ACE2 inhibitors despite stereochemistry issues. In terms of ACE2-targeted antiviral/anti-SARS-CoV-2 and other therapies, novel ACE2 inhibitors should be checked on the subject of possible renin-angiotensin system (RAS)-independent neurological side effects.


Subject(s)
Angiotensin-Converting Enzyme 2 , Neurotransmitter Agents , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Glutamic Acid , Imidazoles/pharmacology , Leucine/analogs & derivatives , Leucine/pharmacology , Neurotransmitter Agents/pharmacology , Presynaptic Terminals , Rats , Rats, Wistar , Reactive Oxygen Species , Synaptosomes , gamma-Aminobutyric Acid , COVID-19 Drug Treatment
13.
Front Immunol ; 13: 859905, 2022.
Article in English | MEDLINE | ID: covidwho-1963444

ABSTRACT

Fifty ~20-amino acid (aa)-long peptides were selected from functionally relevant SARS-CoV-2 S, M, and E proteins for trial B-21 and another 53 common ones, plus some new ones derived from the virus' main genetic variants for complementary trial C-21. Peptide selection was based on tremendous SARS-CoV-2 genetic variability for analysing them concerning vast human immunogenetic polymorphism for developing the first supramutational, Colombian SARS-protection (SM-COLSARSPROT), peptide mixture. Specific physicochemical rules were followed, i.e., aa predilection for polyproline type II left-handed (PPIIL) formation, replacing ß-branched, aromatic aa, short-chain backbone H-bond-forming residues, π-π interactions (n→π* and π-CH), aa interaction with π systems, and molecular fragments able to interact with them, disrupting PPIIL propensity formation. All these modified structures had PPIIL formation propensity to enable target peptide interaction with human leukocyte antigen-DRß1* (HLA-DRß1*) molecules to mediate antigen presentation and induce an appropriate immune response. Such modified peptides were designed for human use; however, they induced high antibody titres against S, M, and E parental mutant peptides and neutralising antibodies when suitably modified and chemically synthesised for immunising 61 major histocompatibility complex class II (MHCII) DNA genotyped Aotus monkeys (matched with their corresponding HLA-DRß1* molecules), predicted to cover 77.5% to 83.1% of the world's population. Such chemically synthesised peptide mixture represents an extremely pure, stable, reliable, and cheap vaccine for COVID-19 pandemic control, providing a new approach for a logical, rational, and soundly established methodology for other vaccine development.


Subject(s)
COVID-19 , Malaria Vaccines , Amino Acid Sequence , COVID-19 Vaccines , Histocompatibility Antigens Class II/genetics , Humans , Imidazoles , Peptides , SARS-CoV-2/genetics , Sulfonamides , Thiophenes
14.
Cells ; 11(10)2022 05 17.
Article in English | MEDLINE | ID: covidwho-1957234

ABSTRACT

ZED1227 is a small molecule tissue transglutaminase (TG2) inhibitor. The compound selectively binds to the active state of TG2, forming a stable covalent bond with the cysteine in its catalytic center. The molecule was designed for the treatment of celiac disease. Celiac disease is an autoimmune-mediated chronic inflammatory condition of the small intestine affecting about 1-2% of people in Caucasian populations. The autoimmune disease is triggered by dietary gluten. Consumption of staple foods containing wheat, barley, or rye leads to destruction of the small intestinal mucosa in genetically susceptible individuals, and this is accompanied by the generation of characteristic TG2 autoantibodies. TG2 plays a causative role in the pathogenesis of celiac disease. Upon activation by Ca2+, it catalyzes the deamidation of gliadin peptides as well as the crosslinking of gliadin peptides to TG2 itself. These modified biological structures trigger breaking of oral tolerance to gluten, self-tolerance to TG2, and the activation of cytotoxic immune cells in the gut mucosa. Recently, in an exploratory proof-of-concept study, ZED1227 administration clinically validated TG2 as a "druggable" target in celiac disease. Here, we describe the specific features and profiling data of the drug candidate ZED1227. Further, we give an outlook on TG2 inhibition as a therapeutic approach in indications beyond celiac disease.


Subject(s)
Celiac Disease , Celiac Disease/drug therapy , GTP-Binding Proteins/metabolism , Gliadin/chemistry , Glutens/chemistry , Humans , Imidazoles , Peptides/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Pyridines , Transglutaminases/metabolism
15.
Expert Rev Clin Pharmacol ; 15(8): 997-1002, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1937599

ABSTRACT

BACKGROUND: This study investigated the clinical efficacy sofosbuvir/daclatasvir (SOF-DCV) in patients with COVID-19. RESEARCH DESIGN AND METHODS: PubMed, Ovid MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases were searched for relevant articles written before January 6, 2022. Only randomized controlled trials (RCTs) comparing the clinical efficacy of SOF-DCV (study group) with alternative treatments (control group) in patients with COVID-19 were included. RESULTS: A total of 9 RCTs were included. The all-cause mortality rate in the study group was 10.7% (96/898), which was lower than that in the control group (12.3%, 108/871). However, this difference was not statistically significant (odds ratio [OR] = 0.83; 95% CI, 0.62-1.12; I2 = 49%). The overall clinical recovery rate was significantly higher in the study group than in the control group (OR = 2.34; 95% CI, 1.47-3.72; I2 = 20%). Furthermore, the average length of hospital stay was shorter in the study group than in the control group (mean deviation = -1.84; 95% CI, -3.42 to -0.26, I2 = 68%). CONCLUSIONS: Although SOF-DCV did not confer a survival benefit in patients with COVID-19, it may increase a patient's odds of clinical recovery, and shorten the length of their hospital stay.


Subject(s)
COVID-19 Drug Treatment , Sofosbuvir , Antiviral Agents/therapeutic use , Carbamates , Drug Therapy, Combination , Genotype , Hepacivirus , Humans , Imidazoles , Pyrrolidines , Randomized Controlled Trials as Topic , Treatment Outcome , Valine/analogs & derivatives
17.
PLoS Pathog ; 18(6): e1010547, 2022 06.
Article in English | MEDLINE | ID: covidwho-1910700

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has created a global pandemic infecting over 230 million people and costing millions of lives. Therapies to attenuate severe disease are desperately needed. Cenicriviroc (CVC), a C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 2 (CCR2) antagonist, an agent previously studied in advanced clinical trials for patients with HIV or nonalcoholic steatohepatitis (NASH), may have the potential to reduce respiratory and cardiovascular organ failures related to COVID-19. Inhibiting the CCR2 and CCR5 pathways could attenuate or prevent inflammation or fibrosis in both early and late stages of the disease and improve outcomes of COVID-19. Clinical trials using CVC either in addition to standard of care (SoC; e.g., dexamethasone) or in combination with other investigational agents in patients with COVID-19 are currently ongoing. These trials intend to leverage the anti-inflammatory actions of CVC for ameliorating the clinical course of COVID-19 and prevent complications. This article reviews the literature surrounding the CCR2 and CCR5 pathways, their proposed role in COVID-19, and the potential role of CVC to improve outcomes.


Subject(s)
CCR5 Receptor Antagonists , COVID-19 Drug Treatment , CCR5 Receptor Antagonists/pharmacology , CCR5 Receptor Antagonists/therapeutic use , Humans , Imidazoles , Receptors, CCR2 , Receptors, CCR5 , SARS-CoV-2 , Sulfoxides
18.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1821532

ABSTRACT

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Imidazoles , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Imidazoles/pharmacology , Mice , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , United States , United States Food and Drug Administration
19.
Biomaterials ; 286: 121570, 2022 07.
Article in English | MEDLINE | ID: covidwho-1821147

ABSTRACT

The mRNA vaccine technology has promising applications to fight infectious diseases as demonstrated by the licensing of two mRNA-based vaccines, Comirnaty® (Pfizer/BioNtech) and Spikevax® (Moderna), in the context of the Covid-19 crisis. Safe and effective delivery systems are essential to the performance of these vaccines and lipid nanoparticles (LNPs) able to entrap, protect and deliver the mRNA in vivo are considered by many as the current "best in class". Nevertheless, current mRNA/LNP vaccine technology has still some limitations, one of them being thermostability, as evidenced by the ultracold distribution chain required for the licensed vaccines. We found that the thermostability of mRNA/LNP, could be improved by a novel imidazole modified lipid, DOG-IM4, in combination with standard helper lipids. DOG-IM4 comprises an ionizable head group consisting of imidazole, a dioleoyl lipid tail and a short flexible polyoxyethylene spacer between the head and tail. Here we describe the synthesis of DOG-IM4 and show that DOG-IM4 LNPs confer strong immunization properties to influenza HA mRNA in mice and macaques and a remarkable stability to the encapsulated mRNA when stored liquid in phosphate buffered saline at 4 °C. We speculate the increased stability to result from some specific attributes of the lipid's imidazole head group.


Subject(s)
COVID-19 , Nanoparticles , Animals , COVID-19/prevention & control , Imidazoles , Immunization , Lipids , Liposomes , Mice , Primates/genetics , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL